

Arduino Start Kit
User Manual

Tinyos Electronics @ 2011

Version 2.0

 www.tinyosshop.com

About This KIT
The overall goal of this kit is fun. Beyond this, the aim is to get you comfortable using a

wide range of electronic components through small, simple and easy circuits. The focus is

to get each circuit working then giving you the tools to figure out why. If you encounter any

problems, want to ask a question, or would like to know more about any part, please

contact with us :Tim@tinyosshop.com.

Kit Details:
� Tosduino duemilanove x1

� Prototype Shield x1

� Breadboard-mini x1

� 10K ohm Resistor x10

� 1K ohm Resistor x10

� 220 ohm Resistor x10

� Jumper wire x 20

� LED-Red/Green/Yellow x2

� Buzzer x1

� Pushbutton x4

� Segment LED x1

� Protoresistor x1

� Infrared Receiver x1

� LM35 Temperature Sensor x1

� Mini Infrared Remote Control x1

� Battery Box x1

� USB Cable x1

 www.tinyosshop.com

Before We Start

PUTTING IT TOGETHER

 www.tinyosshop.com

INSTALLING THE IDE
This is the program used to write code for the Arduino. It may seem a little daunting at first

but once you have it installed and start playing around, its secrets will reveal themselves.

Step 1: Download the software

Go to
http://arduino.cc/en/Main/Software download the software for your operating system.

And then there are two ways of Windows and Mac OSX

Windows XP

Step 2: Unzip the Software

Unzip arduino-00xx-win.zip Recommended Path c:\Program Files\

Step 3: Shortcut Icon

Open c:\program files\arduino-00 Right Click Arduino.exe (send to>Desktop (create

shortcut))

Step 4: Plug In Your Arduino

Plug your Arduino in: Using the included USB cable, plug your Arduino board into a free
USB port.Wait for a box to pop up

Step 5: Add new Hardware

Skip searching the internet

(click the next box when prompted to do so)

Install from a specific location

(click “Install from a list or specific location (Advanced)")

Choose the Location
Duemilanove Board:

c:\program files\arduino-00xx\ drivers\FTDI USB Drivers\

Uno Board

c:\program files\arduino-00xx\drivers\

Finished

Vista, Seven

Step 5: Add new Hardware

 www.tinyosshop.com

Run Device Manager

Start > Run > devmgmt.msc

Choose the Arduino

Other Devices > Arduino Uno (Uno)

Update Driver

click “Update Driver”

Select Driver

click “Browse My Computer for Driver Software”

c:\program files\arduino-00xx\drivers\

Finished

Mac OSX

Step 2: Open The .dmg

Open (mount) arduino-00xx-mac.dmg (��- version).

Step 3: Copy The Application
Go to

"Arduino" (in the devices section of finder)

Move

"Arduino" Application to the

"Applications" folder

Step 4: Install Drivers
Duemilanove Boards Only:.
Go to

"Arduino" device

FTDI Drivers for Intel Macs (x_x_xx).pkg

FTDI Drivers for PPC Macs (x_x_xx).pkg

Restart

Step 5: Plug In Your Arduino
Plug your Arduino in:

Using the included USB cable, plug your Arduino board into a free USB port.

Finished

 www.tinyosshop.com

A Small Programming Primer

ARDUINO PROGRAMMING IN BRIEF

The Arduino is programmed in the C language. This is a quick little primer targeted at

people who have a little bit of programing experience and just need a briefing on the

idiosyncracies of C and the Arduino IDE. If you find the concepts a bit daunting, don't

worry, you can start going through the circuits and pick up most of it along the way. For a

more in-depth intro, the Arduino.cc website is a great resource.

STRUCTURE

Each Arduino program (often called a sketch) has two required functions (also called

routines).

void setup(){ }
All the code between the two curly brackets will be run once when your Arduino program first runs.

void loop(){ }
This function is run after setup has finished. After it has run once it will be run again, and again, until

power is removed.

SYNTAX

One of the slightly frustrating elements of C is its formatting requirements (this also makes

it very powerful). If you remember the following you should be alright.

//

(single line comment)

It is often useful to write notes to yourself as you go along about what each line of code does. To do this

type two forward slashes and everything until the end of the line will be ignored by your program.

/* */
(multi line comment)

If you have a lot to say you can span several lines as a comment. Everything between these two symbols

will be ignored in your program.

{ }
(curly brackets)

Used to define when a block of code starts and ends (used in functions as well as loops).

;
(semicolon)

Each line of code must be ended with a semicolon (a missing semicolon is often the reason for a program

refusing to compile).

VARIABLES

A program is nothing more than instructions to move numbers around in an intelligent way.

Variables are used to do the moving.

 www.tinyosshop.com

int (integer)
The main workhorse, stores a number in 2 bytes (16 bits). Has no decimal places and will store a value

between -32,768 and 32,767.

long (long)
Used when an integer is not large enough. Takes 4 bytes (32 bits) of RAM and has a range between

-2,147,483,648 and 2,147,483,647.

boolean (boolean)
A simple True or False variable. Useful because it only uses one bit of RAM.

float (float)

Used for floating point math (decimals). Takes 4 bytes (32 bits) of RAM and has a range between

-3.4028235E+38 and 3.4028235E+38.

char (character)
Stores one character using the ASCII code (ie 'A' = 65). Uses one byte (8 bits) of RAM. The Arduino

handles strings as an array of char’s.

MATH OPERATORS

Operators used for manipulating numbers. (they work like simple math).

= (assignment)

makes something equal to something else (eg. x= 10 * 2 (x now equals 20))

% (modulo)

gives the remainder when one number is divided by another (ex. 12 % 10 (gives 2))

+ (addition)

- (subtraction)

* (multiplication)

/ (division)

COMPARISON OPERATORS

Operators used for logical comparison.

== (equal to)
(eg. 12 == 10 is FALSE or 12 == 12 is TRUE)

!= (not equal to)
(eg. 12 != 10 is TRUE or 12 != 12 is FALSE)

< (less than)
(eg. 12 < 10 is FALSE or 12 < 12 is FALSE or 12 < 14 is TRUE)

> (greater than)
(eg. 12 > 10 is TRUE or 12 > 12 is FALSE or 12 > 14 is FALSE)

CONTROL STRUCTURE

Programs are reliant on controlling what runs next, here are the basic control elements

(there are many more online).

 www.tinyosshop.com

if(condition){ }
else if(condition){ }
else { }
This will execute the code between the curly brackets if the condition is true, and if not it will test the else

if condition if that is also false the else code will execute.

for(int i = 0; i <#repeats; i++){ }
Used when you would like to repeat a chunk of code a number of times (can count up i++ or down i-- or

use any variable)

DIGITAL

pinMode(pin, mode);
Used to set a pin's mode, pin is the pin number you would like to address 0-19 (analog 0-5 are 14-19). The

mode can either be INPUT or OUTPUT.

digitalWrite(pin, value);
Once a pin is set as an OUTPUT,it can be set either HIGH (pulled to +5 volts) or LOW (pulled to ground).

int digitalRead(pin);
Once a pin is set as an INPUT you can use this to return whether it is HIGH (pulled to +5 volts) or LOW

(pulled to ground).

ANALOG

The Arduino is a digital machine but it has the ability to operate in the analog realm (through tricks).

Here's how to deal with things that aren't digital.

int analogWrite(pin, value);
Some of the Arduino's pins support pulse width modulation (3, 5, 6, 9, 10, 11). This turns the pin on and

off very quickly making it act like an analog output. The value is any number between 0 (0% duty cycle

~0v) and 255 (100% duty cycle ~5 volts).

int analogRead(pin);
When the analog input pins are set to input you can read their voltage. A value between 0 (for 0 volts) and

1024 (for 5 volts) will be returned.

 www.tinyosshop.com

A Small Electronics Primer

COMPONENT DETAILS

LED
(Light Emitting Diode)

What it Does:
Emits light when a small current is passed

through it. (only in one direction)

Identifying:
Looks like a mini light bulb.

No. of Leads:
2 (one longer, this one connects

to positive)

Things to watch out for:
- Will only work in one direction

- Requires a current limiting

resistor

Diode

What it Does:
The electronic equivalent of a one way

valve. Allowing current to flow in one

direction but not the other.

Identifying:
Usually a cylinder with wires extending

from either end. (and an off center line

indicating polarity)

No. of Leads:
2

Things to watch out for:
- Will only work in one direction

(current will flow if end with the

line is connected to ground)

Resistors

What it Does:

Restricts the amount of current that can 2

flow through a circuit.

Identifying:

Cylinder with wires extending from either

end. The value is displayed using a color

coding system (for details see next page)

No. of Leads:

2

Things to watch out for:
- Easy to grab the wrong value

Transistor

What it Does:
Uses a small current to switch or amplify a

much larger current.

Identifying:
Comes in many different packages but you

can read the part number off the package.

(8050 in this kit and find a datasheet

online)

No. of Leads:
3 (Base, Collector, Emitter)

Things to watch out for:
- Plugging in the right way round

(also a current limiting resistor is

often needed on the base pin)

Hobby Servo

What it Does:
Takes a timed pulse and converts it into an

angular position of the output shaft.

Identifying:
A plastic box with 3 wires coming out one

side and a shaft with a plastic horn out the

top.

No. of Leads:
3

Things to watch out for:
- The plug is not polarized so

make sure it is plugged in the

right way.

DC Motor What it Does:
Spins when a current is passed through it.

Identifying:

No. of Leads:
2

Things to watch out for:

 www.tinyosshop.com

This one is easy, it looks like a motor.

Usually a cylinder with a shaft coming out

of one end.

- Using a transistor or relay that

is rated for the size of motor

you're using.

Buzzer

What it Does:
A pulse of current will cause it to click. A

stream of pulses will cause it to emit a

tone.

Identifying:
In this kit it comes in a little black barrel,

but sometimes they are just a gold disc.

No. of Leads:
2

Things to watch out for:
- Difficult to misuse.

Pushbutton

What it Does:
Completes a circuit when it is pressed.

Identifying:
A little square with leads out the bottom

and a button on the top.

No. of Leads:
4

Things to watch out for:
- these are almost square so can

be inserted 90 degrees off angle.

Photo Resistor

What it Does:
Produces a variable resistance dependant

on the amount of incident light.

Identifying:
Usually a little disk with a clear top and a

curvy line underneath.

No. of Leads:
2

Things to watch out for:
- Remember it needs to be in a

voltage

divider before it provides a useful

input.

 www.tinyosshop.com

Getting Started:

Lesson 1: Blinking LED

LEDs (light emitting diodes) are used in all sorts of clever things which is why we have

included them in this kit. We will start off with something very simple, turning one on and

off, repeatedly, producing a pleasant blinking effect. To get started, grab the parts listed

below, pin the layout sheet to your breadboard and then plug everything in. Once the

circuit is assembled you'll need to upload the program. To do this plug the Arduino board

into your USB port. Then select the proper port in Tools > Serial Port > (the comm port
of your Arduino). Next upload the program by going to File > Upload to I/O Board
(ctrl+U). Finally, bask in the glory and possibility that controlling lights offers.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

� 5mm Green LED x1

� Jumper Wire x2

� 220 Ohm Resistor x1

 www.tinyosshop.com

CODE

/* Blink*/

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts

void setup() { // initialize the digital pin as an output:

pinMode(ledPin, OUTPUT); }

// the loop() method runs over and over again,

// as long as the Arduino has power

void loop() {

digitalWrite(ledPin, HIGH); // set the LED on

delay(1000); // wait for a second

digitalWrite(ledPin, LOW); // set the LED off

delay(1000); // wait for a second

}

 www.tinyosshop.com

Lesson 2: Buzzer music

Let's tackle sound next. But sound is an analog phenomena, how will our digital Arduino

cope? We will once again rely on its incredible speed which will let it mimic analog behavior.

To do this, we will attach a buzzer to one of the Arduino's digital pins. A buzzer makes a

clicking sound each time it is pulsed with current. If we pulse it at the right frequency (for

example 440 times a second to make the note middle A) these clicks will run together to

produce notes. Let's get to experimenting with it and get your Arduino playing "Twinkle

Twinkle Little Star".

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

� Buzzer x1

� Jumper Wire x2

 www.tinyosshop.com

CODE

/* Melody

 * (cleft) 2005 D. Cuartielles for K3

 *

 * This example uses a piezo speaker to play melodies. It sends

 * a square wave of the appropriate frequency to the piezo, generating

 * the corresponding tone.

 *

 * The calculation of the tones is made following the mathematical

 * operation:

 *

 * timeHigh = period / 2 = 1 / (2 * toneFrequency)

 *

 * where the different tones are described as in the table:

 *

 * note frequency period timeHigh

 * c 261 Hz 3830 1915

 * d 294 Hz 3400 1700

 * e 329 Hz 3038 1519

 www.tinyosshop.com

 * f 349 Hz 2864 1432

 * g 392 Hz 2550 1275

 * a 440 Hz 2272 1136

 * b 493 Hz 2028 1014

 * C 523 Hz 1912 956

 *

 */

int speakerPin = 9;

int length = 15; // the number of notes

char notes[] = "ccggaagffeeddc "; // a space represents a rest

int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };

int tempo = 300;

void playTone(int tone, int duration) {

 for (long i = 0; i < duration * 1000L; i += tone * 2) {

 digitalWrite(speakerPin, HIGH);

 delayMicroseconds(tone);

 digitalWrite(speakerPin, LOW);

 delayMicroseconds(tone);

 }

}

void playNote(char note, int duration) {

 char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };

 int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956 };

 // play the tone corresponding to the note name

 for (int i = 0; i < 8; i++) {

 if (names[i] == note) {

 playTone(tones[i], duration);

 }

 }

}

void setup() {

 pinMode(speakerPin, OUTPUT);

}

void loop() {

 for (int i = 0; i < length; i++) {

 if (notes[i] == ' ') {

 delay(beats[i] * tempo); // rest

 www.tinyosshop.com

 } else {

 playNote(notes[i], beats[i] * tempo);

 }

 // pause between notes

 delay(tempo / 2);

 }

}

Lesson 3: Segment LED Display

Segement display can be used to display number,this lesson we show how to control

it,here we use the basic 7-segment LED.Common anode.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

� 7 Segment LED x1

� Jumper Wire x10

� 1K Ohm Resistor x8

 www.tinyosshop.com

CODE

//设置控制各段的数字IO脚

int a=7;

int b=6;

int c=5;

int d=11;

int e=10;

int f=8;

int g=9;

int dp=4;

//display number 1

void digital_1(void)

{

unsigned char j;

digitalWrite(c,LOW);//Set pin5 to low which lights the C segment
digitalWrite(b,LOW);// Set pin6 to low which lights the C segment
for(j=7;j<=11;j++)//turn off the other segment

digitalWrite(j,HIGH);

 www.tinyosshop.com

digitalWrite(dp,HIGH);//turn off dp segment(the little dot on the right down part)

}

//display number 2

void digital_2(void)

{

unsigned char j;

digitalWrite(b,LOW);

digitalWrite(a,LOW);

for(j=9;j<=11;j++)

digitalWrite(j,LOW);

digitalWrite(dp,HIGH);

digitalWrite(c,HIGH);

digitalWrite(f,HIGH);

}

//display number 3

void digital_3(void)

{

unsigned char j;

digitalWrite(g,LOW);

digitalWrite(d,LOW);

for(j=5;j<=7;j++)

digitalWrite(j,LOW);

digitalWrite(dp,HIGH);

digitalWrite(f,HIGH);

digitalWrite(e,HIGH);

}

//display number 4

void digital_4(void)

{

digitalWrite(c,LOW);

digitalWrite(b,LOW);

digitalWrite(f,LOW);

digitalWrite(g,LOW);

digitalWrite(dp,HIGH);

digitalWrite(a,HIGH);

digitalWrite(e,HIGH);

digitalWrite(d,HIGH);

}

//display number 5

void digital_5(void)

{

unsigned char j;

for(j=7;j<=9;j++)

digitalWrite(j,LOW);

 www.tinyosshop.com

digitalWrite(c,LOW);

digitalWrite(d,LOW);

digitalWrite(dp,HIGH);

digitalWrite(b,HIGH);

digitalWrite(e,HIGH);

}

//display number 6

void digital_6(void)

{

unsigned char j;

for(j=7;j<=11;j++)

digitalWrite(j,LOW);

digitalWrite(c,LOW);

digitalWrite(dp,HIGH);

digitalWrite(b,HIGH);

}

//display number 7

void digital_7(void)

{

unsigned char j;

for(j=5;j<=7;j++)

digitalWrite(j,LOW);

digitalWrite(dp,HIGH);

for(j=8;j<=11;j++)

digitalWrite(j,HIGH);

}

//display number 8

void digital_8(void)

{

unsigned char j;

for(j=5;j<=11;j++)

digitalWrite(j,LOW);

digitalWrite(dp,HIGH);

}

void setup()

{

int i;

for(i=4;i<=11;i++)

pinMode(i,OUTPUT);//set Pin mode as output

}

void loop()

{

while(1)

{

 www.tinyosshop.com

digital_1();//display number 1

delay(2000);//delay 2 senconds

digital_2();

delay(2000);

digital_3();

delay(2000);

digital_4();

delay(2000);

digital_5();

delay(2000);

digital_6();

delay(2000);

digital_7();

delay(2000);

digital_8();

delay(2000);

}

}

Lesson 4: Pushbuttons

Up to this point we have focused entirely on outputs, time to get our Arduino to listen,

watch and feel. We'll start with a simple pushbutton. Wiring up the pushbutton is simple.

There is one component, the pull up resistor, that might seem out of place. This is included

because an Arduino doesn't sense the same way we do (ie button pressed, button

unpressed). Instead it looks at the voltage on the pin and decides whether it is HIGH or

LOW. The button is set up to pull the Arduino's pin LOW when it is pressed, however, when

the button is unpressed the voltage of the pin will float (causing occasional errors). To get

the Arduino to reliably read the pin as HIGH when the button is unpressed, we add the pull

up resistor.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

� Pushbutton x1

� Jumper Wire x4

� 10K Ohm Resistor x1

� 220 Ohm Resistor x1

� Red LED x1

 www.tinyosshop.com

 www.tinyosshop.com

CODE

int ledPin = 13; // choose the pin for the LED

int inputPin = 2; // choose the input pin (for a pushbutton)

int val = 0; // variable for reading the pin status

void setup() {

pinMode(ledPin, OUTPUT); // declare LED as output

pinMode(inputPin, INPUT); // declare pushbutton as input

}

void loop(){

val = digitalRead(inputPin); // read input value

if (val == HIGH) { // check if the input is HIGH

digitalWrite(ledPin, LOW); // turn LED OFF

} else {

digitalWrite(ledPin, HIGH); // turn LED ON

}

}

Lesson 5: Light Sensor

Whilst getting input from a potentiometer can be useful for human controlled experiments,

what do we use when we want an environmentally controlled experiment? We use exactly

the same principles but instead of a potentiometer (twist based resistance) we use a photo

resistor (light based resistance). The Arduino cannot directly sense resistance (it senses

voltage) so we set up a voltage divider . The exact voltage at the sensing pin is calculable,

but for our purposes (just sensing relative light) we can experiment with the values and

see what works for us. A low value will occur when the sensor is well lit while a high value

will occur when it is in darkness.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

 www.tinyosshop.com

� Proto-Resistor x1

� Jumper Wire x4

� 10K Ohm Resistor x2

� 220 Ohm Resistor x1

� Green LED x1

 www.tinyosshop.com

CODE

/*

 * A simple programme that will change the intensity of

 * an LED based * on the amount of light incident on

 * the photo resistor.

 *

 */

//PhotoResistor Pin

int lightPin = 0; //the analog pin the photoresistor is

 //connected to

 //the photoresistor is not calibrated to any units so

 //this is simply a raw sensor value (relative light)

//LED Pin

int ledPin = 9; //the pin the LED is connected to

 //we are controlling brightness so

 //we use one of the PWM (pulse width

 // modulation pins)

void setup()

{

 www.tinyosshop.com

 pinMode(ledPin, OUTPUT); //sets the led pin to output

}

 /*

 * loop() - this function will start after setup

 * finishes and then repeat

 */

void loop()

{

 int lightLevel = analogRead(lightPin); //Read the

 // lightlevel

 lightLevel = map(lightLevel, 0, 900, 0, 255);

 //adjust the value 0 to 900 to

 //span 0 to 255

 lightLevel = constrain(lightLevel, 0, 255);//make sure the

 //value is betwween

 //0 and 255

 analogWrite(ledPin, lightLevel); //write the value

}

Lesson 6: Temperature Sensor

What's the next phenomena we will measure with our Arduino? Temperature. To do this

we'll use a rather complicated IC (integrated circuit) hidden in a package identical to our

8050 transistors. It has three pin's, ground, signal and +5 volts, and is easy to use. It

outputs 10 millivolts per degree centigrade on the signal pin (to allow measuring

temperatures below freezing there is a 500 mV offset eg. 25 C = 750 mV, 0). To convert

this from the digital value to degrees, we will use some of the Arduino's math abilities.

Then to display it we'll use one of the IDE's rather powerful features, the debug window.

We'll output the value over a serial connection to display on the screen. Let's get to it.

One extra note, this circuit uses the Arduino IDE's serial monitor. To open this, first upload

the program then click the button which looks like a square with an antennae.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

 www.tinyosshop.com

� Prototyping Shield x1

� Mini breadboard x1

� LM35 Temperature Sensor x1

� Jumper Wire x3

 www.tinyosshop.com

CODE

int temperaturePin = 0;

int tempc =0;

int samples[8];

int maxi=-100,mini=100;

int i;

/*

 * setup() - this function runs once when you turn your Arduino on

 * We initialize the serial connection with the computer

 */

void setup()

{

 Serial.begin(9600); //Start the serial connection with the copmuter

 //to view the result open the serial monitor

 //last button beneath the file bar (looks like a box with an

antenae)

}

 www.tinyosshop.com

void loop() // run over and over again

{

 for(i=0;i<=7;i++)

 {

 samples[i]=(5.0*analogRead(temperaturePin)*100.0)/1024.0;

 tempc =tempc + samples[i];

 delay(100);

 }

 tempc =tempc/8.0;

 if(tempc>maxi){maxi =tempc;}

 if(tempc<mini){mini =tempc;}

 Serial.print(tempc,DEC);

 Serial.print(" Celsius ");

 Serial.print(maxi,DEC);

 Serial.print(" Max, ");

 Serial.print(mini,DEC);

 Serial.println(" Min ");

 tempc =0;

 delay(100);

}

Lesson 7: IR Romote Control

Wireless control? Cool! In this lesson we use a Infrared reveiver and a remote control to

turn on a LED or a Buzzer. LED on when you press the VOL+ button and buzzer beep

when you press the VOL- button. How to do that? Please follow me.

THE CIRCUIT:
Parts:
� Arduino UNO or MEGA2560 controller x1

� Prototyping Shield x1

� Mini breadboard x1

� IR Receiver x1

� Jumper wire x7

� 220 Ohm Resistor x1

� Buzzer x1

� Yellow LED x1

 www.tinyosshop.com

CODE

#define BUZZER 10//connect buzzer to digital pin 10

#define LED_RED 11//connect LED to digital pin 11

 www.tinyosshop.com

#define IR_IN 8 //connect the Infrared receiver to digital pin 8

int Pulse_Width=0; //pulse width

int ir_code=0x00; //IR command code

void timer1_init(void) //initilize timer

{

 TCCR1A = 0X00;

 TCCR1B = 0X05;

 TCCR1C = 0X00;

 TCNT1 = 0X00;

 TIMSK1 = 0X00;

}

void remote_deal(void) //get IR command

{

 switch(ir_code)

 {

 case 0xff00://press stop button on the remote controller

 digitalWrite(LED_RED,LOW);//turn off LED

 digitalWrite(BUZZER,LOW);//silence the buzzer

 break;

 case 0xfe01://VOL+

 digitalWrite(LED_RED,HIGH);//turn on led

 break;

 case 0xf609://VOL-

 digitalWrite(BUZZER,HIGH);//buzzer beep

 break;

 }

}

char logic_value()

{

 while(!(digitalRead(8)));

 Pulse_Width=TCNT1;

 TCNT1=0;

 if(Pulse_Width>=7&&Pulse_Width<=10)

 {

 while(digitalRead(8));

 Pulse_Width=TCNT1;

 TCNT1=0;

 if(Pulse_Width>=7&&Pulse_Width<=10)

 return 0;

 else if(Pulse_Width>=25&&Pulse_Width<=27)

 return 1;

 }

 www.tinyosshop.com

 return -1;

}

void pulse_deal()

{

 int i;

 for(i=0; i<8; i++)

 {

 if(logic_value() != 0)

 return;

 }

 for(i=0; i<6; i++)

 {

 if(logic_value()!= 1)

 return;

 }

 if(logic_value()!= 0)

 return;

 if(logic_value()!= 1)

 return;

 ir_code=0x00;

 for(i=0; i<16;i++)

 {

 if(logic_value() == 1)

 {

 ir_code |=(1<<i);

 }

 }

}

void remote_decode(void)

{

 TCNT1=0X00;

 while(digitalRead(8))

 {

 if(TCNT1>=1563)

 {

 ir_code = 0xff00;

 return;

 }

 }

 www.tinyosshop.com

 TCNT1=0X00;

 while(!(digitalRead(8)));

 Pulse_Width=TCNT1;

 TCNT1=0;

 if(Pulse_Width>=140&&Pulse_Width<=141)//9ms

 {

 while(digitalRead(8));

 Pulse_Width=TCNT1;

 TCNT1=0;

 if(Pulse_Width>=68&&Pulse_Width<=72)

 {

 pulse_deal();

 return;

 }

 else if(Pulse_Width>=34&&Pulse_Width<=36)//2.25ms

 {

 while(!(digitalRead(8)));

 Pulse_Width=TCNT1;

 TCNT1=0;

 if(Pulse_Width>=7&&Pulse_Width<=10)//560us

 {

 return;

 }

 }

 }

}

void setup()

{

 unsigned char i;

 pinMode(LED_RED,OUTPUT);

 pinMode(BUZZER,OUTPUT);

 pinMode(IR_IN,INPUT);

}

void loop()

{

 timer1_init();

 while(1)

 {

 remote_decode();

 remote_deal();

 }

}

